Emotion Recognition and Evaluation of Mandarin Speech Using Weighted D-KNN Classification
نویسندگان
چکیده
In this paper, we proposed a weighted discrete K-nearest neighbor (weighted D-KNN) classification algorithm for detecting and evaluating emotion from Mandarin speech. In the experiments of the emotion recognition, Mandarin emotional speech database used contains five basic emotions, including anger, happiness, sadness, boredom and neutral, and the extracted acoustic features are Mel-Frequency Cepstral Coefficients (MFCC) and Linear Prediction Cepstral Coefficients (LPCC). The results reveal that the highest recognition rate is 79.55% obtained with weighted D-KNN optimized based on Fibonacci series. Besides, we design an emotion radar chart which can present the intensity of each emotion in our emotion evaluation system. Based on our emotion evaluation system, we implement a computer-assisted speech training system for training the hearing-impaired people to speak more naturally.
منابع مشابه
Emotion Recognition and Evaluation from Mandarin Speech Signals
The exploration of how human beings react to the world and interact with it and each other remains one of the greatest scientific challenges. The ability to recognize affective states of a person we face is the core of emotional intelligence. In the past, several classifiers were adopted independently and tested on several emotional speech corpora with different language, size, number of emotio...
متن کاملMandarin Audio-visual Speech Recognition with Effects to the Noise and Emotion
This paper presents a Mandarin audio-visual recognition system dealing with noisy and emotional speech signal. In the proposed approach, we extract the visual features of the lips. These features are very important to the recognition system especially in noisy condition or with emotional effects. In this recognition system, we propose to use the weighted-discrete KNN as the classifier and compa...
متن کاملA Weighted Discrete KNN Method for Mandarin Speech and Emotion Recognition
Speech signal is a rich source of information and convey more than spoken words, and can be divided into two main groups: linguistic and nonlinguistic. The linguistic aspects of speech include the properties of the speech signal and word sequence and deal with what is being said. The nonlinguistic properties of speech have more to do with talker attributes such as age, gender, dialect, and emot...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005